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Computation of Bounds for the Positive Eigenvector 
of a Nonnegative Irreducible Matrix 

by Monotone Iteration 

By W. Bunse and A. Bunse-Gerstner 

Abstract. A method for the computation of iterative bounds for the positive eigenvector of a 
nonnegative irreducible matrix is presented. It is based on the P-boundedness of the 
corresponding fixed point operator. Admissible initial bounds can be obtained by conditional 
preiteration. 

1. Introduction. An algorithm for the computation of bounds for the positive 
eigenvector of a nonnegative irreducible matrix is presented. The method is based on 
results of Bohl [1] about iterative bounds for the solution of fixed point operator 
equations. We show that the conditions of a convergence theorem of Bohl can be 
verified for the corresponding fixed point operator of the eigenvalue equation 
Mu = p(M)u. The conditions on the starting values can be fulfilled by applying the 
method of 'conditional iteration' which was introduced by Braess [3] for systems of 
linear equations. Some connections with the conditions for the cone iteration 
technique of Sprekels and Voss [7] arise. Some examples demonstrate the perfor- 
mance of our method. 

2. P-Boundedness of the Fixed Point Operator. Let M be a nonnegative irreducible 
N X N-matrix. Then the spectral radius p = p(M) is a simple real eigenvalue with a 
corresponding positive eigenvector u, p is the only eigenvalue of M with a nonnega- 
tive eigenvector. 

The normalized eigenvector 11 u H U, 1 is thus the unique positive solu- 
tion of the fixed point equation 

(1) TX := Mx =x TX MxH X. 

The computation of iterative bounds for the positive solution of (1) is based on the 
following convergence theorem of Bohl [1]. 

Let Y be a nonempty subset of the partially ordered normed vector space 
(X, ? ,1 11); let T be an operator on Y, P a linear, < -monotone operator on X. 
T is called P-bounded if for all x, y E Y and e E X with x - y < e and y - x < e, 
we have 

Tx-Ty < Pe and Ty-Tx < Pe. 
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If we define the functions 

H(V,W) T(v + W) p(W V) 

and L(a, /3) (a - /3, a + /3) for all (a, /3) E Y X X, then P-boundedness of the 
operator T is equivalent to monotonicity of H according to H(v, w) < H(v), wi) 
whenever v < v3 and iwv < w for (v, w), (v3, wi) E L(Y X X). The iteration procedure 
is defined by 

(2) Vn +I = H(vn, wn), Wn+1 = H(wn, vn) 
under the initial conditions 

(3) vo < H(vo, wo), vo < wo, H(wo, vo) < wo. 

THEOREM 1 (BOHL [1], THEOREM IV, 5.2). Let (Al) or (A2) hold. 
(Al): (X, ? ,11 H HI) is complete, Yclosed, p(P) < 1. 
(A2): T and P are completely continuous. 

Furthermore let T be P-bounded. Then the sequences (Vn )n EN and (Wn )n EN from (2), 
(3) converge to elements v- and w-, respectively, and x- := 2(V- + w-) is a solution of 
Tx = x. For all n E N we have the monotonic error bounds 

Vn < Vn+ I < X < Wn+ I < Wn 

Under assumption (Al) v- = w- holds. 

In the following we shall show the existence of a nonnegative matrix P corre- 
sponding to the operator Tx = Mx/l Mx I1I such that T is P-bounded. The condi- 
tion p(P) < 1 turns out to be equivalent to a condition of Sprekels and Voss [7] and 
can be accomplished by successive squaring of the matrix M + I. This means 
essentially that the method is restricted to strictly monotone or primitive matrices, a 
condition, however, which can be overcome by the above-mentioned shift. Starting 
with known bounds vo, wo for the normalized eigenvector, the initial conditions (3) 
can be achieved by "conditional" iteration, which was introduced by Braess [3] for 
systems of linear equations and was also suggested for more general purposes. 

Let K be the natural cone of nonnegative elements of X= RN with canonical 
partial ordering. 

A lower and upper bound for the eigenvector u E K is given by 

(4) vo,:l mn m1 < (Tx), < max mo k (e TM) k k (e TM)k O 

which is true for all x E K; here we used e : (1,...,1) E RN. (4) can be proved 
easily by employing the inequality 

pi J ~Pi pi min - < ''< max- 
1 q, EJ qj i q, 

which holds for all real numbers p, and positive real numbers q, equality only 
occurring when all the quotients are equal. Without loss of generality we assume 
henceforth that vo #& 0. 

THEOREM 2. The operator Tx = Mx/l Mx II I on the closed set Y: {x E RN l vo < 
x < wo) is P-bounded for P: = (wo - vo)eTMIeTMvo. 
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Proof. The mean value theorem for functions from RN to R applied to the 
component functions T, yields for all x, y E RN 

grad T,(x + 31(y - x)) 

TX-Ty =. (x-Y) 

grad TN(x +3,N(y - X)) 

for certain 8, E ]O, 1[. Let x') : x + 8,(y - x). For the partial derivatives we find 

a (() M,JeTMx(')- (eTM)j(Mx('))i 

aXj [eTMxx() ]2 

Therefore we have 
N 

(Tx-Ty)), I blJ x -Y J, 

where 

inm1j (eTM)j(Mx('1)), 

bj eTMx eTMx(1j2 

and for x, y E Y 

bl_J____ TMx j (MX(| ) -(' 

(eTM)j (eTM)j e TMx (1) 

Because eTMx(') - eWMvo, we finally have 

bI1 
? (eTM)j 

(woi _ Vol).D 
e TMvo 

The matrix P being dyadic, the condition p(P) < 1 reads 

(5) eTM(wo - vo) 1 
e TMvo 

This is identical with the condition of Sprekels and Voss' convergence theorem. It 
was shown there that (5) can always be achieved by taking an appropriate power of 
M + I. 

We have shown so far that if the initial values satisfy (3) and if (5) holds, then for 
the iteration procedure 

- M(v, + WJ)_ HM'(W - VJ)H (w0 - v) 
H'+ IM(Vn + Wn)II 211MvoH1 

M(Vn + Wn) + 11 M(Wn - Vn) ) (w - ) 

W"' 
11 M( Vn + Wn ) 11 1 211 Mvo 11 I V 

HM(vn + w ) + 1 2HIMv01 W-o 

the statements of Theorem 1 hold. 
The proof of Theorem 2 reveals that one can improve convergence by iterating 

according to 

(6) v,?l +I ( w ) Pn W(1 =n ), W+I T(c ) + P(w ) 
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where P = (w0 -v0 )e TM/eTMv,. Then we have 

p( p ) = II M(uw0o - v l) II M(wo - vO)il p(P)I 

3. Initial Conditions. The initial condition (3) does not automatically hold for the 
choice of initial vectors v0, w0 from (4), but there are methods which generate 
admissible starting values. Braess [3] has shown how to obtain admissible starting 
values for monotone iteration schemes for systems of linear equations. We shall 
briefly sketch how these results carry over to our situation. Other procedures which 
construct initial values are described by Bohl [1]. 

The nonnegative cone K of RN has nonempty interior K= {x E RN l x1 > 0 for all 
E {l,.. .,N}}, x <y meansy - x E K, sup(x, y) and inf(x, y) are characterized 

by taking componentwise maxima and minima, respectively. 
Starting with the bounds x0: v0, y0: w0 from (4), the conditional iteration 

procedure is defined by 

xM+ : Hup(xm, ym) := sup(xm, H(xm, y")), 

y = Hinf(yYm, Xm) inf(yimI H(yM, Xm)). 

As in the case of v0 u - w01 for some component i the iteration is stationary, we 
may assume without loss of generality that 

(7) x0 < u <y0. 

Then p(P) < 1 implies the existence of a number mo such that 

(8) xo < xmo < ymo < yo. 

This can be seen as follows: 
The definition of H and of the conditional iteration procedure implies ytm -xm 

Pm(y 0 - x0), from which we conclude that 

(9) lim (y' - xm) = 0. 

By induction we obtain 

Xm < XM+1 < u y M+l <YM, 

making use of the P-boundedness of T. Together with (7) and (9), the stated result 

(8) follows. 
(8) in turn now implies that xmi-n , ymo-l are admissible starting values for the 

ordinary procedure (2) and (3). This can be seen by noting that whenever x, + - 

H(xm, yi), for an m E N and a component i, then this also holds for all n > m 
(similarly for ytm). 

The condition p(P) < 1 is also necessary for conditional iteration to lead to 
situation (8). Assume p(P) > 1; let x : 0 be an eigenvector of P corresponding to 
the eigenvalue p(P). By assumption (8) the ordinary iteration takes over, so by 
Theorem 1 there exist 

x-&:= lim Hsup(xIn yim), y:= lim Hinf(Xim,yi) and 
m - oo m ->oo 

{ = Tt - ) 
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Because xo < x and y < y?, there exists E E R? such that 

(10) x0 < x-Ex and y?o + Ex. 
Monotonicity of H yields 

H(xo, y )< H( x - 
?x, y + 

X() )2 ) ( 2 )P(x) 

x- Ex. 

From (10) and (1 1) we have 

X = Sup(x0, H(x?, y)) < x - Ex 

and similarly 

=inf(y?, H(y?, x0)) ?y + Ex. 
Then by induction 

xm x-Ex for all m E N. 

The order relation being closed, this leads to a contradiction. 

4. Numerical Computations. All of the several conditions for the proposed method 
to work can be fulfilled for an arbitrary nonnegative irreducible matrix M by 
considering appropriate powers of M + I. The shift is necessary only for imprimitive 
matrices. We recall that these conditions included a nontrivial lower bound for the 
eigenvector, the condition on the spectral radius of P, and the initial conditions (3). 
As p(P) governs the rate of convergence essentially it is usually advisable to square 
M + I beyond the point where p(P) is first less than 1. To avoid arithmetic overflow 
or underflow one then has to eventually normalize the matrix. 

The following examples were computed with the improved method, i.e., using Pn 
defined in (6) instead of P. As a measure of accuracy we required the relative error 
of the eigenvector l - vl / I I Vn I I I and the relative error of the eigenvalue 
(11 Mwn 1 -II Mvn I I1)/ I Mvn I to be less than 10-8. The computations were per- 
formed on the TR 440 of the University of Bielefeld. 

Example 1. The N X N-matrix 

M= ((Mij)), mij = N + 1- max(i, j), 
has spectral radius p(M) = 2[1 -cos(7T/(2N + 1))]-. 

(a) For N = 12 it was computed by Yamamoto [8] and Hall and Spanier [6] with 
their modifications of the power method. For M itself we have p(P) = 0.6304, 
v0 # 0. After three conditional iteration steps condition (3) was satisfied and after a 
total number of 25 iterations the desired accuracy was reached. The corresponding P 
for (M + 1)2 has a spectral radius of 0.0632, and only six iterations lead to the same 
accuracy, taking about one third of the computational time. 

Further squaring gives a spectral radius of p(P) = 0.001. Observe that p(P) is 
also an a priori relative error of the eigenvalue p(M). For (M + I)4 only two 
iterations were necessary to obtain the relative error of 10-8. The additional 
squaring, however, takes about as much time as the saved four iterations so that 
there was no further saving in computational time. 

(b) Whether additional squaring results in saving computational time also depends 
on the size of the matrix. This is illustrated by the following table. After each N we 
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list the number of squarings of the matrix, the spectral radius p(P), the total number 
of iterations (number of conditional iterations), and the computation time in 
seconds. 

TABLE 1 

#squ. p(P) #it. sec #squ. p(P) #it. sec 
N 3 0 0.4400 18(1) 0.45 N = 6 0 0.5778 23(2) 0.72 

1 0.2584 12 0.32 1 0.1174 8 0.44 
2 0.0300 5 0.26 2 0.0031 3 0.32 

N 12 0 0.6304 25(3) 1.95 N = 24 0 0.6572 26(5) 3.53 
1 0.0632 6 0.64 1 0.0513 6 1.82 
2 0.0009 2 0.59 2 0.0006 2 1.88 

N 48 0 0.6707 27(6) 11.09 N = 96 0 0.6774 27(7) 38.60 
1 0.0485 6 7.09 1 0.0478 6 35.12 
2 0.0006 2 9.04 2 0.0006 2 55.90 

Example 2. For the computation of the spectral radius and the positive eigenfunc- 
tion of the integral operator 

Kf(s) f 1 f(t) dt 

a product Simpson's method was used, i.e., replacing the kernel function k(s, t) in 
the variable t and the unknown eigenfunction by piecewise quadratic polynomials 
and then collocating. This is equivalent to replacing the kernel function by a 
biquadratic polynomial. 

Using N + 1 equidistant nodes in each direction, this amounts to solving the 
(N + 1) X (N + 1)-matrix eigenvalue problem 

KfN+1 KN+ IWN+ I fN+? XIN+ I 

where KN+ I consists of values k(s, tj) at the nodes, fN+ I = ((sO), ... ,f(SN)7, and 
the weight matrix is given by 

4 2 -1 
2 16 2 0 

-1 2 8 2 -1 
2 16 2 

WN+I= 15N -1 2 8 
15N 

0 8 2 -1 
2 16 2 

-1 2 4 

(cf. Hammerlin [5] and Boland and Duris [2]). Burgmeier and Scott [4] have shown 
that for the integral operator K 1.657 118 85 ? p(K) < 1.657 118 91 holds. In the 
following table we list the bounds for the spectral radius of the discrete approxima- 
tion operators K and the characteristics of the iteration as in Example 1. 
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TABLE 2 

N 10 (1.657 128 59 < p(k) < 1.657 128 60) 

#squ p(P) #it. sec 
0 0.6051 25 1.25 
3 0.2157 11 0.96 
4 0.0410 5 0.81 

N = 20 (1.657 119 43 < p(k) < 1.657 119 44) 

0 0.5963 24 2.75 
3 0.3561 17(1) 3.29 
4 0.0681 6 2.68 

N = 40 (1.657 118 89 < p(K) < 1.657 118 91) 

0 0.5913 24 7.84 
4 0.1223 8(1) 12.27 
5 0.0603 6(1) 14.20 

N = 80 (1.657 118 86 < p(k) < 1.657 118 87) 

0 0.5891 24 25.33 
4 0.2307 12(2) 73.49 
6 0.0917 7(1) 99.28 

From the computed examples we conclude that additional squaring is worthwhile 
only for small N. 
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